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Abstract
We study harmonic polynomials on the quantum Euclidean space EN

q generated
by quantum coordinates xi, i = 1, 2, . . . , N , on which the quantum group
SOq(N) acts. They are defined as solutions of the equation �qp = 0,
where �q is the q-Laplace operator on EN

q . We construct a q-analogue of
the classical zonal polynomials and associated spherical polynomials with
respect to the quantum subgroup SOq(N − 2). The associated spherical
polynomials constitute an orthogonal basis of the spaces of homogeneous
harmonic polynomials. They are represented as products of polynomials
depending on q-radii and xj , xj ′ , j ′ = N − j + 1. This representation is,
in fact, a q-analogue of the classical separation of variables.

PACS numbers: 02.20.Uw, 02.30.Gp, 02.40.Gh

1. Introduction

The Laplace operator, harmonic polynomials and related separations of variables are of great
importance in classical analysis. They are closely related to the rotation group SO(N) and its
subgroups; see, for example, [1], chapter 10.

Many new directions of contemporary mathematical physics are related to quantum groups
and noncommutative geometry. It is natural to generalize the classical theory of harmonic
polynomials to noncommutative case. Such a generalization can be of great importance for
further development of some branches of mathematical and theoretical physics related to
noncommutative geometry. For example, it can be used for the development of quantum
mechanics and field theory on noncommutative spaces. In particular, the Laplace operators
on the quantum spaces are useful for the construction of operators of quantum mechanics.
It is interesting to generalize the results of this paper to the case of harmonic functions
(in particular, to the case of functions with singularities).

The aim of this paper is to construct a q-deformation of many aspects of the classical
theory of harmonic polynomials. In the q-case, instead of the Euclidean space we have the
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quantum Euclidean space. This is defined in terms of the associative algebra A generated by
the noncommuting elements x1, x2, . . . , xN satisfying the certain defining relations. These
elements play the role of Cartesian coordinates of the classical Euclidean space EN .

The q-Laplace operator �q on A is defined in terms of q-derivatives (see formula (16)).
Instead of the group SO(N) we have the quantum group SOq(N) or the corresponding
quantum algebra Uq(soN). In our exposition, it is more convenient to deal with the algebra
Uq(soN). The q-harmonic polynomials on the quantum Euclidean space are defined as
elements p of A (that is, polynomials in quantum coordinates x1, x2, . . . , xN ) for which
�qp = 0. We construct projectors Hm : Am → Hm, where Am and Hm are the subspaces of
homogeneous (of degree m) polynomials inA and in the spaceH of all q-harmonic polynomials
from A, respectively. Using these projectors we construct in Hm a q-analogue of associated
spherical harmonics with respect to the quantum subgroup SOq(N − 2). They constitute
an orthogonal basis of the space Hm corresponding to the chain of the quantum subgroups
SOq(N) ⊃ SOq(N − 2) ⊃ SOq(N − 4) ⊃ · · · ⊃ SOq(3) (or SOq(2)). Here we obtain a
q-analogue of the corresponding separation of polyspherical coordinates. Our construction
is similar that which we used in [2] for the case of quantum complex vector space with the
quantum unitary group Uq(N) as a quantum motion group. Our derivations use essentially
the results of [3]. Note that our approach is different from that used in [4] since we use the
projection technics described in section 5. Besides, the noncommutative space considered
in [4] is not the quantum Euclidean space and the ‘motion’ group is not the quantum group
SOq(N).

Everywhere below we suppose that q is not a root of unity. Moreover, under consideration
of ∗-operations and scalar products, we suppose that 0 < q < 1. We shall use two different
definitions of q-numbers:

[a] = 1 − qa

1 − q
[a]q = qa − q−a

q − q−1
.

It is necessary to pay attention to which of these definitions is used in each concrete case.

2. The quantum Euclidean space

The quantum Euclidean space EN
q is defined by means of the algebra of polynomials

A ≡ Cq[x1, x2, . . . , xN ] in noncommutative elements x1, x2, . . . , xN which are called
quantum Cartesian coordinates; see [5, 6]. The number N can be even or odd and we
represent it as N = 2n or N = 2n + 1, respectively. Moreover, for j = 1, 2, . . . , N we
shall use the notation j ′ = N − j + 1. The algebra A is the associative algebra generated by
elements x1, x2, . . . , xN satisfying the defining relations

xixj = qxjxi i < j and i �= j ′ (1)

xi ′xi − xixi ′ = q − q−1

qρi−1 + q−ρi+1

(i+1)′∑
j=i+1

xjxj ′qρj ′ i < n (2)

xn′xn − xnxn′ = (q1/2 − q−1/2)x2
n+1 if N = 2n + 1 (3)

xn′xn = xnxn′ if N = 2n (4)

where

(ρ1, . . . , ρ2n+1) = (
n − 1

2 , n − 3
2 , . . . , 1

2 , 0,− 1
2 , . . . ,−n + 1

2

)
if N = 2n + 1
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(ρ1, . . . , ρ2n) = (n − 1, n − 2, . . . , 1, 0, 0,−1, . . . ,−n + 1) if N = 2n.

The monomials xν := x
ν1
1 x

ν2
2 · · · xνN

N , νi = 0, 1, 2, . . . , form a basis of A; see [3]. The vector
space of the algebra A can be represented as a direct sum of the vector subspaces Am consisting
of homogeneous polynomials of homogeneity degree m: A = ⊕∞

m=0 Am.
A ∗-operation (that is, an involutive algebra anti-automorphism) can be defined on the

algebra A turning it into a ∗-algebra. This ∗-operation is uniquely determined by the relations
x∗

i = qρi′ xi ′ , i = 1, 2, . . . , N .
The quantum rotation group SOq(N) and the corresponding quantized universal

enveloping algebra Uq(soN) act on the algebra A. These actions are determined by each
other. It will be convenient for us to use the action of the algebra Uq(soN). The last algebra
is the Hopf algebra generated by the elements Ki,K

−1
i , Ei, Fi, i = 1, 2, . . . , n, satisfying the

certain defining relations (see, for example, section 6.1.3 of [6]), where n is an integral part
of N/2. The algebra Uq(soN) is supplied by the Hopf algebra operations. We adopt these
operations determined in [3]. The action of X ∈ Uq(soN) on an element a ∈ A will be denoted
as X � a.

A ∗-operation can also be introduced on Uq(soN). We adopt such a ∗-operation which
defines the compact real form of Uq(soN); see, for example, section 6.1.7 of [6]. The
action of the ∗-algebra Uq(soN) on the ∗-algebra A is such that (X 	 a)∗ = S(X)∗ 	 a∗ for
X ∈ Uq(so(N)) and a ∈ A, where S is the antipode on Uq(soN); see [3].

The action of Uq(soN) on A is explicitly given in [3], lemma 2.5. For Uq(so2n+1) and
Uq(so2n), the action of elements Ek and Fk, k = 1, 2, . . . , n − 1, are determined as

Ek 	 xν = [νk+1]qq
νk−νk+1+1xν+εk−εk+1 − [νk′]qq

νk−νk+1−νk′ +ν(k+1)′ +1xν+ε(k+1)′ −εk′

Fk 	 xν = [νk]qq
−νk+νk+1−ν(k+1)′ +νk′ +1xν−εk+εk+1 − [ν(k+1)′]qq

−ν(k+1)′ +νk′ +1xν−ε(k+1)′ +εk′ .

The action of elements En and Fn are given by the formulae

En 	 xν = [νn+1]qνn−νn+1+3/2xν+εn−εn+1 − [νn+2]qq
νn−νn+2+1xν+εn+1−εn+2

Fn 	 xν = [νn]qq
−νn+νn+2+1/2xν−εn+εn+1 − [νn+1]q−νn+1+νn+2+1xν−εn+1+εn+2

if N = 2n + 1 and by the formulae

En 	 xν = [νn+1]qq
νn−1−νn+1+1xν+εn−1−εn+1 − [νn+2]qq

νn−1+νn−2νn+1−νn+2+1xν+εn−εn+2

Fn 	 xν = [νn−1]qq
−νn−1−2νn+νn+1+νn+2+1xν−εn−1+εn+1 − [νn]qq

−νn+νn+2+1xν−εn+εn+2

if N = 2n, where εi is the vector with the ith coordinate equal to 1 and all others equal to 0.
The monomials xν are weight vectors with respect to the action of Uq(soN) on

A. We represent weights λ in the well-known orthogonal coordinate system, that is, as
λ = µ1ε1 + µ2ε2 + · · · + µnεn (in this system, highest weights are given by the coordinates
µ1, µ2, . . . , µn such that µ1 � µ2 � · · ·). The weight of the monomial xν is

λ = (ν1 − ν1′)ε1 + (ν2 − ν2′)ε2 + · · · + (νn − νn′)εn.

The action of the element Ki on the monomial xν is given by the formula

Ki 	 xν = q(νi−νi′ )−(νi+1−ν(i+1)′ )xν i < n

Kn 	 xν = qνn−νn′ xν if N = 2n + 1

Kn 	 xν = q(νn−1−ν(n−1)′ )+(νn−νn′ )xν if N = 2n.
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It is evident that there exist elements K̂i , i = 1, 2, . . . , n, of the algebra Uq(soN) such that

K̂i 	 xν = q(νi−νi′ )xν . (5)

A differential calculus is developed on the quantum Euclidean space which is determined
by the R-matrix of the quantum algebra Uq(soN). There exist different formulations for this
differential calculus. We adopt the definition of the differential operators ∂i , i = 1, 2, . . . , N ,
used in [3]. These operators act on the monomials xν as

∂k 	 xν = [νk]qq
νk+1+···+ν1′ xν−εk k � n (6)

∂n+1 	 xν = [νn+1]qνn′ +···+ν1′ xν−εn+1 if N = 2n + 1

∂k′ 	 xν = [νk′]qq
νk′ +ν(k−1)′ ···+ν1′ xν−εk′ +

n∑
j=k+1

[νj ]q[νj ′ ]q(q − q−1)qρk−ρj qdkj xν+εk−εj −εj ′

+ [νn+1 − 1][νn+1]
q − q−1

1 + q
qρk+2qek xν+εk−2εn+1 k � n (7)

where dkj = νk + · · · + νj−1 + ν(j−1)′ + · · · + ν1′ and ek = (νk + · · · + ν1′) − 2νn+1. The last
summand of equation (7) must be omitted for N = 2n. The operators ∂i , i = 1, 2, . . . , N ,
satisfy the relations

∂i∂j = q−1∂j ∂i i < j i �= j ′ (8)

∂i ′∂i − ∂i∂i ′ = − q − q−1

qρi−1 + q−ρi+1

(i+1)′∑
k=i+1

∂k∂k′qρk i < n (9)

∂n′∂n − ∂n∂n′ = −(q1/2 − q−1/2)∂2
n+1 if N = 2n + 1

∂n′∂n = ∂n∂n′ if N = 2n.
(10)

The operators ∂k and the operators x̂i of left multiplication by xi satisfy certain relations
which can be represented by means of the quantum R-matrix of the algebra Uq(soN). These
relations are given in [3]. We need the following:

∂kx̂k = x̂k∂kq
δkk′ −1 − (q − q−1)

∑
j<k

x̂j ∂j + (q − q−1)σkq
2ρk′ x̂k′∂k′ + c (11)

∂kx̂j = x̂j ∂k + (q − q−1)σkjq
ρj ′ −ρk x̂k′∂j ′ k �= j, j ′ (12)

∂kx̂k′ = qx̂k′∂k k �= k′ cx̂k = qx̂kc c∂k = q−1∂kc (13)

where σk = 1 if k > k′ and σk = 0 otherwise, σkj = 1 if k > j ′ and σkj = 0 otherwise, c is
the linear operator which acts on the monomials xν as c 	 xν = qν1+···+ν1′ xν .

3. Squared q-radius and q-Laplace operator

The element

Q =
N∑

i=1

qρi′ xixi ′ = (1 + qN−2)

(
n∑

i=1

qρi′ xixi ′ +
q

q + 1
x2

n+1

)
(14)

(where the last summand with xn+1 must be omitted if N = 2n) of the algebra A is called the
squared q-radius on the quantum Euclidean space. It is shown in [3] that the centre of A is
generated by Q.
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We shall also use the elements Qj = ∑j ′
i=j qρi′ xixi ′ , 1 < j � n, which are squared

q-radii for the subalgebras Cq[xj , . . . , xj ′ ]. They satisfy the relations

QjQk = QkQj xixi ′ = qρi

(
Qi

1 + qN−2i
− Qi+1

1 + qN−2i−2

)
1 � i � n

xiQj = q2Qjxi xi ′Qj = q−2Qjxi ′ for i < j

xiQj = Qjxi for j � i � j ′.

It can be checked by direct computation that

xk
1xk

1′ = Q′k
1(Q

′
2/Q

′
1; q2)k (15)

where Q′
1 = q−ρ1′ Q1/(1 + qN−2), Q′

2 = q−ρ1′ Q2/(1 + qN−4) and

(a; q)s = (1 − a)(1 − aq) · · · (1 − aqs−1).

To the element Q there corresponds the operator Q̂ on A defined as Q̂ = ∑N
i=1 qρi′ x̂i x̂i ′ ,

where x̂i is the operator of left multiplication by xi . It is clear that Q̂ : Am → Am+2.
We also consider on A the operator

�q =
N∑

i=1

qρi ∂i∂i ′ (16)

which is called the q-Laplace operator on the quantum Euclidean space. We have
�q : Am → Am−2. The important property of the operators Q̂ and �q is that they commute
with the action of the algebra Uq(soN) on A; see [3]. The operators Q̂ and �q satisfy the
relations

�qQ̂
k − q2kQ̂

k
�q = Q̂

k−1
q−N+3[2k][N + 2k + 2γ − 2]

(1 + qN−2)2

(1 + q)2
(17)

where γ is the operator acting on the monomials xν as γ xν = (ν1 + · · · + νN)xν (see [3]). We
shall also use the following formula from [3]

�q(xν) = (1 + qN−2)qν1+···+ν1′−1

×

 n∑

j=1

[νj ]q[νj ′ ]qq
−ρj qdxν−εj −εj ′ + [νn+1 − 1][νn+1]

qe

1 + q
xν−2εn+1


 (18)

where d = ν1 + · · · + νj−1 + ν(j−1)′ + · · · + ν1′ , e = ν1 + · · · + ν1′ − 2νn+1 + 2, and the last
summand must be omitted for N = 2n.

4. q-Harmonic polynomials

A polynomial p ∈ A is called q-harmonic if �qp = 0. The linear subspace of A consisting
of all q-harmonic polynomials is denoted by H. If Hm = Am ∩H, then Hm is the subspace of
H consisting of all homogeneous of degree m harmonic polynomials.

Remark. If n = 2, then A consists of all polynomials in commuting elements x1 and x1′ ≡ x2.
In this case, the space H of q-harmonic polynomials has a basis consisting of the polynomials

1, xk
1 , xk

1′ k = 1, 2, . . . . (19)

Proposition 1 [3]. If m � 2, then the space Am can be represented as the direct sum

Am = Hm ⊕ QAm−2. (20)
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We shall need the following consequences of the decomposition (20):

Corollary 1. If p ∈ Hm, then p cannot be represented as p = Qkp′, k �= 0, with some
polynomial p′ ∈ A.

Corollary 2. For dimension of the space of q-harmonic polynomials Hm we have the formula

dimHm = (m + N − 3)!(2m + N − 2)

(N − 2)!m!
.

Corollary 3. The linear space H can be represented as a direct sum H = ⊕∞
m=0 Hm.

Corollary 1 is a direct consequence of formula (20). Corollary 2 is proven in the same
way as in the classical case; see, for example, chapter 10 of [1]. For this we note that
dimAm = (N+m−1)!

(N−1)!m! . Hence, for dimHm = dimAm − dimAm−2 we obtain the expression
stated in the corollary. In order to prove corollary 3, we note that any p ∈ H can be represented
as p = ∑

m pm, pm ∈ Am. We have �qp = ∑
m �qpm = 0. Since �qpm,m = 0, 1, 2, . . . ,

have different homogeneity degrees, it follows from the last equality that �qpm = 0 for all
values of m. Thus, H = ⊕∞

m=0 Hm.

Proposition 2. The linear space isomorphism A � C[Q] ⊗ H is true, where C[Q] is the
space of all polynomials in Q.

This proposition follows from the fact that the space Am decomposes into the direct sum
Am = ⊕ �m/ 2�

j=0 QjHm−2j , where �m/2� is the integral part of the number m/2.
The decomposition A � C[Q] ⊗ H is a q-analogue of the theorem on separation of

variables for Lie groups in an abstract form [7]. Thus, a study of A reduces to a study of the
space H.

Since the operator �q commutes with the action of the algebra Uq(soN), the subspaces
Hm are invariant with respect to the action of this algebra. It is proven in [3] that the irreducible
representation Tm of Uq(soN) with highest weight (m, 0, . . . , 0) is realized on Hm.

We denote by AUq(sor ) the space of elements of A consisting of invariant elements with
respect to the action of Uq(sor ) ⊂ Uq(soN). We have AUq(soN ) = C[Q]; see [3]. In what
follows we shall consider the subalgebra Uq(soN−2) generated by the elements Hi,Ei, Fi,

i = 2, 3, . . . , n.

Proposition 3. We have AUq(soN−2) � ⊕
k,l C[Q2]xk

1xl
1′ � ⊕

k,l C[Q]xk
1xl

1′ .

Proof. In order to prove this proposition we note that for Uq(soN−2)-module A we have

A = Cq[x1, x2, . . . , xN ] =
⊕

k,l
Cq[x2, x3, . . . , xN−1]xk

1xl
N .

The action of Uq(soN−2) on xk
1xl

N is trivial. Moreover, Cq[x2, x3, . . . , xN−1]Uq(soN−2) = C[Q2].
Since Q = c1Q2 + c2x1xN , where c1 and c2 are constants, we have AUq(soN−2) �⊕

k,l C[Q2]xk
1xl

N � ⊕
k,l C[Q]xk

1xl
N . Proposition is proven. �

The associative algebra F
(
SN−1

q

)
generated by the elements x1, . . . , xN satisfying the

relations (1)–(3) and the relation Q = 1 is called the algebra of functions on the quantum
sphere SN−1

q ; see [5] and chapter 11 of [6]. It is clear that the canonical algebra isomorphism
F

(
SN−1

q

) � A/I is true, where I is the two-sided ideal of A generated by the element Q − 1.
We denote by τ the canonical algebra homomorphism τ : A → A/I � F

(
SN−1

q

)
. This

homomorphism is called the restriction of polynomials of A on to the quantum sphere SN−1
q .
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It was shown in [3] that τ : H → F
(
SN−1

q

)
is a one-to-one mapping, that is, the restriction

of a q-harmonic polynomial to the sphere SN−1
q determines this polynomial uniquely. This

statement allows us to determine a scalar product on H. For this, we use the invariant
functional h on the quantum sphere SN−1

q defined in [3]. In order to give this functional,
we introduce the linear subspace (τA)0 of F

(
SN−1

q

)
spanned by the elements τxν such that

ν1 = ν1′ , . . . , νn = νn′ , νn+1 = 2m, m = 0, 1, 2, . . . (for N = 2n the last condition must
be omitted). The functional h vanishes on the elements τxν �∈ (τA)0 and on the monomials
τxν ∈ (τA)0 it is given by formula (5.2) of [3]. A scalar product 〈· , ·〉 on H is introduced by
the formula 〈p1, p2〉 = h((τp1)

∗(τp2)), where a∗ determines an element conjugate to a ∈ A
under action of the ∗-operation.

Proposition 4. We have Hm⊥Hr if m �= r .

Proof follows from the fact that (τp1)
∗(τp2) �∈ (τA)0 if p1 ∈ Hm, p2 ∈ Hr , m �= r .

Note that the operators

ω(k) = qN/2qγ ω(e) = Q̂ ω(f ) = −�qq
−γ qN/2/(1 + qN−2)2

satisfy the relations ke = q2ek, kf = q−2f k, ef −f e = (k−k−1)/(q−q−1), determining the
quantum algebra Uq(sl2). Therefore, the algebra homomorphism ω : Uq(sl2) → L(A) gives
a representation of Uq(sl2), commuting with the natural action L of Uq(soN) on A determined
above. It is shown as in [2] that the representation ω × L of Uq(sl2) × Uq(soN) decomposes
into irreducible representations as

ω × L =
∞⊕

m=0

Dm+N/2 × Tm

where Dm+N/2 are the discrete series representations of Uq(sl2) with lowest weights m + N/2;
see, for example, [8]. Therefore, Uq(sl2) and Uq(soN) constitute a quantum dual pair under
the action on A. Note that this dual pair is different from that of [4] since the algebra Uq(soN)

of [4] is not a Drinfeld–Jimbo algebra.

5. The projection Am → Hm

Let us go back to the decomposition (20) and construct the projector Hm : Am = Hm ⊕
QAm−2 → Hm. We present this projector in the form

Hm =
�m/2�∑
k=0

αkQ̂
k
�k

q αk ∈ C (21)

where �m/2� is the integral part of the number m/2. Let us show that the summands on
the right-hand side are linearly independent (in this case, the coefficients αk are determined
uniquely up to a common constant). Let p = xm

n+1 if N = 2n + 1. Using formula (18) we
derive that

�k
q

(
xm

n+1

) = qk

(
1 + qN−2

1 + q

)k
[m]!

[m − 2k]!
xm−2k

n+1 2k � m (22)

where [m]! = [1][2] · · · [m]. Acting by the right-hand side of (21) on xm
n+1, we obtain a

linear combination of the elements Qkxm−2k
n+1 , k = 1, 2, . . . , �m/2�. It is easy to see that these

elements are linearly independent. This means that the summands in equation (21) are linearly

independent. If N = 2n, then instead of p = xm
n+1 we take p = x

m1
1 x

m′
1

1′ and make the same
reasoning (see this calculation in the next section).
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We have to calculate values of the coefficients αk in equation (21). In order to do this

we take the relation Hmp = ∑
k αkQ̂

k
�k

qp, p ∈ Am, act by the operator �q upon both sides
of it and use the relation (17). Under this action, the left-hand side vanishes. Equating the

right-hand side to 0 and taking into account that the elements Q̂
k
�k+1

q p, k = 1, 2, . . . , �m/2�,
are linearly independent for generic elements p ∈ Am, we derive the recurrence relation

q−N−2k+5(1 + qN−2)2[2k][N + 2m − 2k − 2]αk + (1 + q)2αk−1 = 0

for αk . This gives

αk = (−1)kq(N−4)k+k2 (1 + q)2k

(1 + qN−2)2k

[N + 2m − 2k − 4]!!

[2k]!![N + 2m − 4]!!

where [s]!! = [s][s − 2][s − 4] · · · [2](or[1]) for s �= 0 and [0]!! = 1. Using the relations

[2k]!! = (q2; q2)k

(1 − q)k

[N + 2m − 2k − 4]!!

[N + 2m − 4]!!
= (1 − q)k

(qN+2m−2k−2; q2)k

(qN+2m−2k−2; q2)k = (q−N−2m+4; q2)kq
−2k−k(k−1)(−qN+2m−2)k

we derive that

αk = q2k2−2mk−k(1 − q2)2k

(1 + qN−2)2k(q−N−2m+4; q2)k(q2; q2)k
. (23)

Note that the coefficients αk are determined by the recurrence relation uniquely up to a
common constant. In equation (21) we have chosen this constant in such a way that Hmp = p

for p ∈ Hm. This means that H2
m = Hm.

Since the action of X ∈ Uq(soN) commutes with Q̂ and �q the operator Hm commutes
with the action of Uq(soN).

The operator Hm can be used for obtaining explicit forms of q-harmonic polynomials. As
an example, we derive here formulae for harmonic projection of the polynomial xm

n+1 ∈ Am

when N = 2n + 1. For this, we use formula (22) for �k
q

(
xm

n+1

)
. Since

[m]!

[m − 2k]!
= (qm−2k+2; q2)k(q

m−2k+1; q2)k

(1 − q)−2k

(qm−2k+2; q2)k = (−1)kqmk−k(k−1)(q−m; q2)k

(qm−2k+1; q2)k = (−1)kqmk−k2
(q−m+1; q2)k

we derive that

�k
q

(
xm

n+1

) =
(

1 + qN−2

1 + q

)k
q2mk−2k2+2k

(1 − q)2k
(q−m; q2)k(q

−m+1; q2)kx
m−2k
n+1 .

Using expression (21) for Hmxm
n+1 and formula (23) for coefficients αk , we obtain

Hmxm
n+1 = xm

n+1

�m/2�∑
k=0

(q−m; q2)k(q
−m+1; q2)k

(q2; q2)k(q−N−2m+4; q2)k

(
aQx−2

n+1

)k
a = q(1 + q)

1 + qN−2
. (24)

Note that we have used x−2
n+1 in equation (24). However, since there exists the multiplier xm

n+1
before the sum sign, negative powers of xn+1 in fact are absent.

Expression (24) for Hmxm
n+1 can be represented in terms of the basic hypergeometric

function 2φ1 (see [9] for the definition of this function):

Hmxm
n+1 = xm

n+12φ1
(
q−m, q−m+1; q−N−2m+4; q2, aQx−2

n+1

)
.
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Using the definition P
(α,β)

k (x; q) = 2φ1(q
−k, qα+β+k+1; qα+1; q, qx) of the little q-Jacobi

polynomials, we can represent Hmxm
n+1 in the form

Hmxm
n+1 = xm

n+1P
(− N

2 +m+1, N−3
2 )

r

(
1 + q

q(1 + qN−2)
Qx−2

n+1

)
where r = m/2 if m is even and r = (m − 1)/2 if m is odd.

6. Zonal polynomials with respect to SOq(N − 2)

A polynomial ϕ of the space Hm is called zonal with respect to the quantum subgroup
SOq(N − 2) (or with respect to the subalgebra Uq(soN−2)) if it is invariant with respect to
the action of elements X ∈ Uq(soN−2). In order to find zonal polynomials ϕ ∈ Hm we have
to take polynomials p ∈ Am invariant with respect to the subalgebra Uq(soN−2) and to act on
them by the projection Hm.

It follows from proposition 3 that, in the space Am, there exist m + 1 elements which

are Uq(soN−2)-invariant and linearly independent over C[Q]. They coincide with x
m1
1 x

m′
1

1′ ,

m1 + m′
1 = m. Therefore, Hm

(
x

m1
1 x

m′
1

1′
)
,m1 + m′

1 = m, are zonal polynomials with respect to
Uq(soN−2). Let us find an explicit form of these polynomials.

Using formula (18) we find that

�k
q

(
x

m1
1 x

m′
1

1′

)
= (1 + qN−2)kq(m−k)kq−(n−ε)k [m1]q![m′

1]q!

[m1 − k]q![m′
1 − k]q!

x
m1−k
1 x

m′
1−k

1′

where ε = 1 for N = 2n and ε = 1
2 for N = 2n + 1. Since

[m1]q!

[m1 − k]q!
= q(2m1−k+1)k/2 (q−2m1; q2)k

(q − q−1)k

we have

�k
q

(
x

m1
1 x

m′
1

1′

)
= (1 + qN−2)kq2(m−k)kq(−n+3+ε)k (q−2m1; q2)k(q

−2m′
1; q2)k

(1 − q2)2k
x

m1−k
1 x

m′
1−k

1′ .

Now using formulae (21) and (23) we derive that

ϕm
m1m

′
1
≡ Hm

(
x

m1
1 x

m′
1

1′

)
=

min(m1,m
′
1)∑

k=0

(q−2m1; q2)k(q
−2m′

1; q2)k

(q2; q2)k(q−N−2m+4; q2)k

q(−n+2+ε)k

(1 + qN−2)k
Qkx

m1−k
1 x

m′
1−k

1′ .

(25)

Using formula (15) the polynomials ϕm
m1m

′
1

can be represented as

ϕm
m1m

′
1
= x

m1−m′
1

1

m′
1∑

k=0

Ck
m1m

′
1
QkQ′k(Q′

2/Q
′; q2)m′−k (26)

if m1 � m′
1 and as

ϕm
m1m

′
1
=

(
m1∑
k=0

Ck
m1m

′
1
QkQ′k(Q′

2/Q
′; q2)m′−k

)
x

m′
1−m1

1′ (27)

if m′
1 � m1, where Q′ ≡ Q′

1 and Q′
2 are such as in equation (15). Unfortunately, these

polynomials cannot be represented in terms of known orthogonal polynomials, as it was in the
case of the quantum spaces on which the quantum group GLq(N) acts; see [2].
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Theorem 1. The zonal polynomials ϕm
m1m

′
1
,m1 + m′

1 = m, of Hm are orthogonal with respect
to the scalar product introduced in section 4. These polynomials constitute a full set of zonal
polynomials in the space Hm.

Proof. We have K̂1 	(
x

m1
1 x

m′
1

1′
) = qm1−m′

1
(
x

m1
1 x

m′
1

1′
)
; that is, the monomials x

m1
1 x

m′
1

1′ ,m1 +m′
1 =

m, are eigenfunctions of the operator defined by the action of K̂1 on A which belong to
different eigenvalues. Since the projection Hm : Am → Hm commutes with the action of
Uq(soN), then K̂1 	 ϕm

m1m
′
1
= qm1−m′

1ϕm
m1m

′
1
. The scalar product of section 4 is defined in terms

of the invariant functional; that is, this scalar product is invariant with respect to the action of
K̂i, i = 1, 2, . . . , n. Since the zonal polynomials ϕm

m1m
′
1
,m1 + m′

1 = m, belong to different

eigenvalues of K̂1, they are orthogonal. The theorem is proven. �

It is possible to define zonal polynomials of the space Hm with respect to the subalgebra
A := Uq(so2) × Uq(soN−2), where Uq(so2) is the subalgebra of Uq(soN) generated by the
element K̂1. Then the following assertions are true which easily follows from the above
results.

Theorem 2. The subspace of zonal polynomials of the spaceHm with respect to the subalgebra
A is not more than one-dimensional. The space Hm contains a zonal polynomial if and
only if m is even. This zonal polynomial coincides with the polynomial ϕm

m/2,m/2 given by
formula (25).

7. Associated spherical polynomials with respect to SOq(N − 2)

The aim of this section is to construct an orthogonal basis of the space Hm of homogeneous
q-harmonic polynomials which corresponds to the chain Uq(soN) ⊃ Uq(soN−2) ⊃ · · · ⊃
Uq(so3) (or Uq(so2)). This basis is a q-analogue of the set of associated spherical harmonics
on the classical Euclidean space which are products of Jacobi polynomials and correspond to
the chain of the subgroups SO(N) ⊃ SO(2) × SO(N − 2) ⊃ · · · ; see chapter 10 of [1]. The
basis elements give solutions of the equation �qp = 0 in ‘separated coordinates’. So, we
obtain a q-analogue of the classical separation of variables.

Let us note that

�q ≡ �(N)
q =

N∑
j=1

qρj ∂j ∂j ′ = (qρ1∂1∂1′ + qρ1′ ∂1′∂1) + �(N−2)
q (28)

where �(N−2)
q is the q-Laplace operator on the subspace A(N−2) ≡ Cq[x2, . . . , x2′ ]. We also

have from equation (9) that

∂1′∂1 − ∂1∂1′ = − q − q−1

qρ1−1 + q−ρ1+1
�(N−2)

q . (29)

Let p(x2, . . . , x2′) be a polynomial of A which does not depend on x1 and x1′ ≡ xN . Then
it is easy to see from equation (6) that ∂1p(x2, . . . , x2′) = 0.

Lemma 1. Let p(x2, . . . , x2′) ∈ A and �(N−2)
q p = 0. Then ∂1′p = 0 and �qp = 0.

Proof. Let p(x2, . . . , x2′) be harmonic with respect to �(N−2)
q , that is �(N−2)

q p = 0. Then
due to equation (29) we have ∂1∂1′p = 0, and �qp = 0 using equation (28). From
formula (7) for ∂1′ , it follows that ∂1′p = x1p

′(x2, . . . , x2′), where p′(x2, . . . , x2′) is a
polynomial in x2, x3, . . . , x2′ . Let us show that from ∂1∂1′p = 0 the equality ∂1′p = 0
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follows. Indeed, due to equation (6) we have 0 = ∂1∂1′p = ∂1x1p
′ = p̃(x2, . . . , x2′), where

p̃(x2, . . . , x2′) is some polynomial in x2, x3, . . . , x2′ which is a linear combination (with
nonvanishing coefficients) of the same monomials as p′ has. Moreover, if p′ �= 0 then p̃ �= 0.
Since p̃ = 0 then p′ = 0 and we have ∂1′p = x1p

′(x2, . . . , x2′) = 0. This proves the
lemma. �

Lemma 2. If p(x2, . . . , x2′) ∈ A, then

�(N−2)
q

(
x

m1
1 x

m′
1

1′ p(x2, . . . , x2′)
) = x

m1
1 x

m′
1

1′ �(N−2)
q p(x2, . . . , x2′). (30)

If p(x2, . . . , x2′) is �(N−2)
q -harmonic, then

�q

(
x

m1
1 x

m′
1

1′ p(x2, . . . , x2′)
) = (qρ1 + q−ρ1)∂1′∂1x

m1
1 x

m′
1

1′ p(x2, . . . , x2′). (31)

Proof. Since ∂1x̂1′ = qx̂1′∂1, ∂2x̂1 = x̂1∂2, ∂1p(x2, . . . , x2′) = 0, and ∂2x̂1′ = x̂1′∂2 +
(q − q−1)qρ1−ρ2 x̂2′∂1 (see formulae (11)–(13)) we obtain

∂2
(
x

m1
1 x

m′
1

1′ p(x2, . . . , x2′)
) = x̂

m1
1 ∂2

(
x

m′
1

1′ p(x2, . . . , x2′)
)

= x̂
m1
1 (x̂1′∂2 + (q − q−1)qρ1−ρ2 x̂2′∂1)x

m′
1−1

1′ p(x2, . . . , x2′)

= x̂
m1
1 x̂

m′
1

1′ ∂2p(x2, . . . , x2′).

Analogously, using relation (12) we derive that

∂2′
(
x

m1
1 x

m′
1

1′ p(x2, . . . , x2′)
) = x̂

m1
1 ∂2′

(
x

m′
1

1′ p(x2, . . . , x2′)
)

= x̂
m1
1 (x̂1′∂2′ + (q − q−1)qρ1−ρ2′ x̂2∂1)

(
x

m′
1−1

1′ p(x2, . . . , x2′)
)

= x̂
m1
1 x̂

m′
1

1′ ∂2′p(x2, . . . , x2′).

We have the same results when ∂2 and ∂2′ are replaced by ∂i and ∂i ′ , i = 3, 4, . . . . This
leads to the relation (30). If p is �(N−2)

q -harmonic, then it follows from equation (29) that

(∂1′∂1 − ∂1∂1′)x
m1
1 x

m′
1

1′ p(x2, . . . , x2′) = 0. From here and from equation (28) we derive that

�q

(
x

m1
1 x

m′
1

1′ p
) = (qρ1∂1∂1′ + qρ1′ ∂1′∂1)

(
x

m1
1 x

m′
1

1′ p
) = (qρ1 + qρ1′ )∂1′∂1

(
x

m1
1 x

m′
1

1′ p
)

and the relation (31) is proven. The lemma is proven. �

Proposition 5. Let h ≡ h(x2, . . . , x2′) be a �(N−2)
q -harmonic polynomial of degree l. Then

�q

(
x

m1
1 x

m′
1

1′ h
) = (qρ1 + q−ρ1)[m1]q[m′

1]qq
m1+m′

1−1x
m1−1
1 x

m′
1−1

1′ h. (32)

Proof. Using equation (31) and then equations (1), (6) and (13), we derive that

�q

(
x

m1
1 x

m′
1

1′ h(x2, . . . , x2′)
) = (qρ1 + q−ρ1)[m1]qq

m′
1+m1+l−1x

m1−1
1 ∂1′x

m′
1

1′ h(x2, . . . , x2′). (33)

Using equation (11) we have for ∂1′x
m′

1
1′ h(x2, . . . , x2′) the expression

∂1′x
m′

1
1′ h =


q−1x1′∂1′ − (q − q−1)

∑
j<N

x̂j ∂j + (q − q−1)x̂1∂1q
2ρ1 + c


 x

m′
1−1

1′ h

= (qx̂1′∂1′ − (q − q−1)E + qm′
1−1+l )x

m′
1−1

1′ h (34)

where E = ∑N
k=1 x̂k∂k . It is proven by using the relation between x̂i and ∂j that

Ex̂k = q−1x̂kE +
q − q−1

1 + qN−2
qN−ρk−2Q̂∂k′ + x̂kc
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(see also proposition 2.9 of [3]). Then

E
(
x

m′
1

1′ h(x2, . . . , x2′)
) = (q−1x̂1′E + x1′ql+m′

1−1)x
m′

1−1
1′ h(x2, . . . , x2′)

= (ql+m′
1−1 + ql+m′

1−3 + · · · + ql−m′
1+1)x

m′
1

1′

× h(x2, . . . , x2′) + q−m′
1 x̂

m′
1

1′ Eh(x2, . . . , x2′).

By direct calculation it is proven that

E = c − c−1

q − q−1
+

q − q−1

(1 + qN−2)2
qN−1Q̂�qc

−1

(see also [3]). Since h ∈ Hl , then Eh = [l]qh. Now we have for Ex̂
m′

1
1′ h the expression

E
(
x

m′
1

1′ h(x2, . . . , x2′)
) = (ql[m′

1]q + q−m′
1 [l]q)x

m′
1

1′ h(x2, . . . , x2′)

= [m′
1 + l]qx

m′
1

1′ h(x2, . . . , x2′).

Therefore, returning to equation (34) we obtain

∂1′x
m′

1
1′ h(x2, . . . , x2′) = (

qx̂1′∂1′ + qm′
1−1+l − (q − q−1)[m′

1 − 1 + l]q
)
x

m′
1−1

1′ h(x2, . . . , x2′)

= (qx̂1′∂1′ + q−m′
1−l+1)x

m′
1−1

1′ h(x2, . . . , x2′).

Applying this relation for x
m′

1−1
1′ h, x

m′
1−2

1′ h, . . . , x1′h and lemma 1 we receive

∂1′x
m′

1
1′ h(x2, . . . , x2′) = (q1−m′

1−l + q1−m′
1−l+2 + · · ·)xm′

1−1
1′ h(x2, . . . , x2′)

+ qm′
1x

m′
1

1′ ∂1′h(x2, . . . , x2′) = q−l[m′
1]qx

m′
1−1

1′ h(x2, . . . , x2′).

Now using equation (33) we derive equation (32). The proposition is proven. �

Let hl ∈ H(N−2)
l , where H(N−2)

l is the space of �(N−2)
q -harmonic polynomials in

x2, x3, . . . , x2′ . Then x
m1
1 x

m′
1

1′ hl ∈ Am, m = m1 + m′
1 + l. Using formula (32), in the

same way as in the case of the formula for �k
q

(
x

m1
1 x

m′
1

1′
)

in section 6, we find that

�k
q

(
x

m1
1 x

m′
1

1′ hl

) = (1 + qN−2)kq(m1+m′
1−k)kq−(N−2)k/2 [m1]q![m′

1]q!

[m1 − k]q![m′
1 − k]q!

x
m1−k
1 x

m′
1−k

1′ hl.

Now using formulae (21) and (23) we derive that Hm

(
x

m1
1 x

m′
1

1′ hl

) = t
N,m

m1m
′
1
hl , where

t
N,m

m1m
′
1
=

min(m1,m
′
1)∑

k=0

(q−2m1; q2)k(q
−2m′

1; q2)k

(q2; q2)k(q−N−2m+4; q2)k

q(−N−l+3)k/2

(1 + qN−2)k
Qkx

m1−k
1 x

m′
1−k

1′ . (35)

Using formula (15) the polynomials t
N,m

m1m
′
1

can be represented in a form similar to
equations (26) and (27).

Proposition 6. The space Hm can be represented as the orthogonal sum

Hm =
⊕

m1,m
′
1

t
N,m

m1m
′
1
H(N−2)

m−m1−m′
1

(36)

where H(N−2)

m−m1−m′
1

is the space of �(N−2)
q -harmonic polynomials in x2, x3, . . . , x2′ and the

summation is over all non-negative values of m1 and m′
1 such that m − m1 − m′

1 � 0.

Proof. The subspaces t
N,m

m1m
′
1
H(N−2)

m−m1−m′
1

from equation (36) do not pairwise intersect and
elements from different subspaces are linearly independent. Therefore, on the right-hand side
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of equation (36) we have a direct sum. Besides, we have Hm ⊇ ⊕
m1,m

′
1
t
N,m

m1m
′
1
H(N−2)

m−m1−m′
1
.

By direct computation (using corollary 2) we show that dimensions of the spaces on both sides
of equation (36) are equal to each other. Now, in order to prove our proposition, we have to
show that the sum on the right-hand side is orthogonal.

It is easy to prove that the subspaces on the right-hand side of equation (36) are eigenspaces
of the operators K̂i, i � n, from formula (5) belonging to different eigenvalues. As in the
proof of theorem 1, it follows from this fact that the sum (36) is orthogonal. The proposition
is proven. �

Now we apply the decomposition (36) to the subspaces H(N−2)

m−m1−m′
1

and obtain

Hm =
⊕
m1,m

′
1

⊕
m2,m

′
2

t
N,m

m1m
′
1
t
N−2,l

m2m
′
2
H(N−4)

l−m2−m′
2

l = m − m1 − m′
1 (37)

where H(N−4)

l−m2−m′
2

are the subspaces of homogeneous �(N−4)
q -harmonic polynomials in

x3, x4, . . . , x3′ . Continuing such decompositions we obtain the decomposition

Hm =
⊕

m,m′,k
C�m,m′,k(x1, . . . , x1′)

if N = 2n and the decomposition

Hm =
⊕

m,m′,σ
C�m,m′,σ (x1, . . . , x1′)

if N = 2n + 1, where m = (m1,m2, . . . , mn−1), m′ = (m′
1,m

′
2, . . . , m

′
n−1) in the first

case, m = (m1,m2, . . . , mn), m′ = (m′
1,m

′
2, . . . , m

′
n) in the second case and mj are non-

negative integers, k take integral values, and σ = 0 or 1. The basis q-harmonic polynomials
�m,m′,k(x1, . . . , x1′) of Hm are given by the formula

�m,m′,k(x1, . . . , x1′) = t
N,m

m1m
′
1
t
N−2,m−m1−m′

1

m2m
′
2

. . . t
4,m−∑n−2

i=1 mi−
∑n−2

i=1 m′
i

mn−1m
′
n−1

t2,k (38)

if N = 2n and by the formula

�m,m′,σ (x1, . . . , x1′) = t
N,m

m1m
′
1
t
N−2,m−m1−m′

1

m2m
′
2

· · · t3,m−∑n−1
i=1 mi−

∑n−1
i=1 m′

i

mnm′
n

xσ
n+1 (39)

if N = 2n + 1. In equation (38), t2,k = xk
n if k > 0, t2,k = 1 if k = 0, and t2,k = x−k

n′ if k < 0.
Note that the integers k, σ , m = (m1,m2, . . .) and m′ = (m′

1,m
′
2, . . .) take such values that

m1 + m′
1 + m2 + m′

2 + · · · + mn−1 + m′
n−1 + k = m (40)

for N = 2n and

m1 + m′
1 + m2 + m′

2 + · · · + mn + m′
n + σ = m (41)

for N = 2n + 1. Besides, conditions such as the condition m − m1 − m′
1 � 0 of proposition 6

must be fulfilled at each step.

Theorem 3. If N = 2n then the polynomials (38), for which the equality (40) is satisfied,
constitute an orthogonal basis of the space Hm. If N = 2n + 1 then the polynomials (39), for
which the equality (41) is satisfied, constitute an orthogonal basis of the space Hm.

Proof. The fact that the polynomials (38) for N = 2n and the polynomials (39) for N = 2n+1
constitute a basis of Hm has been proved above. Orthogonality of basis elements is proved in
the same method as in theorem 1. The theorem is proven. �

The polynomials (38) and (39) represent solutions of the equation �qp = 0 in separated
coordinates. In the classical case, these polynomials are products of Jacobi polynomials; see
chapter 10 of [1].
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Note that if we were to consider zonal and associated spherical polynomials on the
more complicated quantum spaces (for example, on the quantum Grassmannians) on which
the quantum group SOq(N) acts, then, as we believe, they would be expressed in terms of
orthogonal polynomials related to root systems (such as were considered in [10]).

It is interesting to have explicit formulae showing how the generators Ki,Ei, Fi of
Uq(soN) act on the basis elements of theorem 3. However, the derivation of these formulae is
very awkward and the formulae are not simple. We shall consider them in a separate paper.
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